Corrigé du Contrôle Continu nº 2

Question de cours :(2 points)

Donner les formules permettant de calculer le taux périodique $\tau_{\text{pér}}$ et le taux (annuel) effectif τ_{eff} d'un produit financier proposé au taux nominal τ_{nom} et pour lequel il y a n capitalisations par an.

On a:

$$\tau_{\text{pér}} = \frac{\tau_{\text{nom}}}{n}$$
 et
$$\tau_{\text{eff}} = \left(1 + \tau_{\text{pér}}\right)^n - 1 = \left(1 + \frac{\tau_{\text{nom}}}{n}\right)^n - 1.$$

Exercice 1: (3 points)

On considère un placement de 500€ au taux d'intérêt composé au taux annuel de 4%.

1. Quelle est la valeur acquise par ce placement au bout de 8 ans? Notons V_n la valeur acquise par ce placement au bout de n années et C_0 le capital placé. Puisque les intétêts sont composés, on a :

$$V_n = C_0(1+\tau)^n = 500 \times 1,04^n.$$

En particulier, la valeur acquise au bout de 8 ans est :

$$V_8 = 500 \times 1,04^8 \simeq 684,28 \in$$
.

2. Quelle doit-être la durée minimale du placement si l'on souhaite un capital final d'au moins 800€? Avec les notations précédentes, il suffit d'écrire que :

$$V_n \ge 800 \iff 500 \times 1,04^n \ge 800$$

 $\iff 1,04^n \ge \frac{800}{500} = 1,6$
 $\iff n \ln(1,04) = \ln(1,04^n) \ge \ln(1,6)$ (car ln est croissante et $\ln(a^n) = n \ln(a)$)
 $\iff n \ge \frac{\ln(1,6)}{\ln(1,04)} \simeq 11,98$ (car $\ln(1,04) > 0$).

Il faut donc attendre au moins 12 ans.

Exercice 2: (3 points)

Déterminer la valeur acquise, juste après le dernier versement, d'une suite de 9 annuités de $300 \in$ au taux annuel de 1.5%.

On peut synthétiser l'information dans le tableau suivant :

${ m n^ode}\ { m l'ann\'ee}\ k$	1	 8	9
annuité a_k	300	 300	300
valeur de a_k juste après le $9^{\rm e}$ versement	$300 \times 1,015^{8}$	 $300 \times 1,015$	300

La valeur acquise juste après le dernier versement de cette suite d'annuités est donc :

$$300 + 300 \times 1,015 + \dots + 300 \times 1,015^8 = 300 \times \frac{1 - 1,015^9}{1 - 1,015} \simeq 2867,80$$

Exercice 3 : (4 points) On considère un emprunt de $C_0 = 5000 \in$ amortissable par le versement d'annuités d'amortissement constant égal à $m = 1250 \in$. La première annuité s'élève à $1300 \in$.

1. Combien de versements auront lieu pour rembourser cet emprunt?

Rappelons que la somme des amortissements est le capital emprunté. Ceux-ci étant constants égaux à m = 1250, leur somme est nm où n est le nombre de versements. On a donc $nm = C_0$ et ainsi

$$n = \frac{C_0}{m} = \frac{5000}{1250} = 4.$$

Il y aura 4 versements.

2. Donner le montant I_1 des intérêts de la première période.

Le montant a_1 de la première annuité se décompose comme $a_1 = m_1 + I_1 = m + I_1$. Ainsi,

$$I_1 = a_1 - m = 1300 - 1250 = 50 \in$$
.

3. Exprimer I_1 en fonction de C_0 et du taux τ de l'emprunt. En d éduire le taux de l'emprunt.

On a:

$$I_1 = C_0 \tau = 5000 \tau$$

donc

$$\tau = \frac{I_1}{5000} = \frac{50}{5000} = 0,01 = 1\%.$$

4. Dresser le tableau d'amortissement.

Celui-ci prend la forme suivante.

nº de l'année	capital restant dû	intérêts de la $k^{\rm e}$ période	$k^{\rm e}$ amortissement	k^{e} annuité
k	C_{k-1}	I_k	m_k	a_k
1	5000	$5000 \times 0,01 = 50$	1250	1300
2	3750 = 5000 - 1250	37,50	1250	1287, 50
3	2500	25	1250	1275
4	1250	12,50	1250	1262, 50

Exercice 4: (4 points)

Un emprunt indivis amortissable par 10 annuités constantes est tel que le premier amortissement est égal 79504,60€ alors que le troisième s'élève à 87653,8215€ (valeur théorique).

1. Calculer le taux d'intérêt.

Rappelons que les annuités étant constantes les amortissements vérifient :

$$m_{k+1} = (1+\tau)m_k$$

où τ est le taux de l'emprunt. On a donc : $m_3 = (1+\tau)^2 m_1$ et $1+\tau > 0$. On en déduit que

$$\tau = \sqrt{\frac{m_3}{m_1}} - 1 = \sqrt{\frac{87653,8215}{79504,60}} - 1 = 0,05 = 5\%.$$

2. Calculer le montant initial de l'emprunt.

Rappelons que, pour un emprunt à annuités constantes, le premier amortissement vérifie : $m_1 = \frac{C_0 \tau}{(1+\tau)^n-1}$ où n est le nombre d'annuités et C_0 le capital emprunté. Ce dernier est donc :

$$C_0 = m_1 \frac{(1+\tau)^{10} - 1}{\tau} = 79504, 60 \frac{1,05^{10} - 1}{0.05} \simeq 1000000, 31$$

Exercice 5: (4 points)

Pour emprunter une somme de 13000€, un particulier a le choix entre deux banques. La banque A propose de rembourser l'emprunt (et les intérêts correspondants) par un seul versement de 14000€, 2 ans après l'emprunt. La banque B propose de rembourser l'emprunt (et les intérêt correspondants) par deux versements de 7000€, le premier 1 an après l'emprunt, le second 2 ans après l'emprunt.

1. Calculer le TAEG du prêt proposé par chacune des deux banques.

Le TAEG τ_A de la banque A vérifie :

$$13000 = \frac{14000}{(1+\tau_A)^2}$$

donc

$$\tau_A = \sqrt{\frac{14000}{13000}} - 1 \simeq 0,038 = 3,8\%.$$

Le TAEG τ_B de la banque B vérifie :

$$1300 = \frac{7000}{1 + \tau_B} + \frac{7000}{(1 + \tau_B)^2}.$$

En posant $x = 1/(1 + \tau_B) > 0$ on se ramène à résoudre :

$$7000x^2 + 7000x = 13000,$$

soit

$$7000x^2 + 7000x - 13000 = 0.$$

Le discriminant de ce polynôme est

$$\Delta = 7000^2 - 4 \times 7000 \times (-13000) = 413000000.$$

On obtient une solution négative que l'on élimine et une seconde :

permettant de déduire la valeur du TAEG τ_B en écrivant que :

$$\frac{1}{1+\tau_B} = x_2$$

et donc

$$\tau_B = \frac{1}{x_2} - 1 = \frac{1}{\frac{-7000 + \sqrt{413000000}}{2 \times 7000}} - 1 \simeq 0,051 = 5,1\%.$$

2. Laquelle choisir?

On s'oriente vers la banque proposant le TAEG le plus faible, c'est-à-dire la banque A.

Exercice 6: [Bonus] (2 points)

Rappelons que le taux de rendement interne (TRI) d'un investissement I qui rapporte annuellement un revenu constant R pendant n années est le taux τ qui annule la valeur actuelle nette (VAN) de l'investissement, c'est-à-dire vérifiant l'équation :

$$-I + R \frac{1 - (1 + \tau)^{-n}}{\tau} = 0.$$

Une entreprise peut investir dans une nouvelle machine pour un montant de 39019,66€. Ceci lui rapportera 10000€ chaque année pendant 4 ans.

1. Écrire l'équation définissant le TRI dans ce cadre.

On a ici un investissement de $I=39019,66\mathfrak{C}$, rapportant annuellement un revenu constant $R=10000\mathfrak{C}$ pendant n=4 années. Avec ces valeurs, l'équation définissant le TRI τ de l'investissement s'écrit :

$$-39019,66 + 10000 \frac{1 - (1 + \tau)^{-4}}{\tau} = 0.$$

2. Vérifier que le TRI est d'environ 1%.

En injectant la valeur de tau de 1% dans le membre de gauche de la dernière équation, on constate que :

$$-39019,66 + 10000 \frac{1 - (1 + 0,01)^{-4}}{0,01} \simeq -0,004 \simeq 0$$

ce qui indique que le TRI de cet investissement est effectivement d'environ 1%.

3. Sur le marché, une banque propose un produit financier rémunéré au taux annuel de 2%. L'entreprise a-t-elle intérêt à investir dans cette nouvelle machine?

Le produit financier proposé par la banque est rémunéré à un taux annuel supérieur au TRI de l'investissement. L'entreprise n'a aucun intérêt à réaliser cet investissement puisqu'elle réalisera un plus grand profit en plaçant chez cette banque la somme qu'elle aurait du investir (et sans travailler!).