Compléments autour de la Leçon 42

Exercice 1

Écrire les négations des propositions suivantes.

- 1. $P \Rightarrow Q$
- $2. P \Leftrightarrow Q$
- 3. $\forall \varepsilon > 0, \exists n_0 \in \mathbf{N} : \forall n, m \geq n_0, |u_n u_m| < \varepsilon$
- 4. $\forall n \geq 0, \exists k \geq n : \omega \in E_k$

Exercice 2

Pour chacune des propositions suivantes indiquer si elle est vraie ou fausse; justifier.

- 1. $\forall x \in \mathbf{R}, \ \forall \varepsilon > 0, \ \exists y \in \mathbf{R}, \ y \neq x : \ |x y| < \varepsilon$
- 2. $\forall x \in \mathbf{R}, \forall \varepsilon > 0, \exists y \in \mathbf{Q} : |x y| < \varepsilon$
- 3. $\exists x \in \mathbf{R}, \exists \varepsilon > 0, \forall y \in \mathbf{R}, y \neq x : |x y| < \varepsilon$
- 4. $\exists x \in \mathbf{R}, \forall \varepsilon > 0, \forall y \in \mathbf{R}, y \neq x : |x y| < \varepsilon$
- 5. $\forall x \in \mathbf{R}, \exists \varepsilon > 0, \forall y \in \mathbf{R} : |x y| < \varepsilon$
- 6. $\exists x \in \mathbf{R}, \forall \varepsilon > 0, \exists y \in \mathbf{R}, y \neq x : |x y| < \varepsilon$
- 7. $\exists a, b \in \mathbf{R} \setminus \mathbf{Q} : a^b \in \mathbf{Q}$.
- 8. $(\forall x \in \mathbf{R}, \exists \varepsilon > 0, \forall y \in \mathbf{R} : |x y| < \varepsilon) \Rightarrow (\exists a, b \in \mathbf{R} \setminus \mathbf{Q} : a^b \in \mathbf{Q})$
- 9. $(\exists a, b \in \mathbf{R} \setminus \mathbf{Q} : a^b \in \mathbf{Q}) \Rightarrow (\forall x \in \mathbf{R}, \exists \varepsilon > 0, \forall y \in \mathbb{R} : |x y| < \varepsilon)$
- 10. Si une fonction f admet une tangente horizontale en un certain $x_0 \in \mathbf{R}$ alors elle admet un extremum local en x_0 .
- 11. Si une fonction f définie sur \mathbf{R} admet un extremum local en $x_0 \in \mathbf{R}$ alors elle admet une tangente horizontale en un certain x_0 .
- 12. Soit f une fonction définie sur [0,1] et à valeurs dans \mathbf{R}_+ . Si $\int_0^1 f(x) \, \mathrm{d}x = 0$ alors f(x) = 0, pour tout $x \in [0,1]$.
- 13. Soit f une fonction continue sur [0,1] et à valeurs dans \mathbf{R}_+ . Si $\int_0^1 f(x) \, \mathrm{d} x = 0$ alors f(x) = 0, pour tout $x \in [0,1]$.

Exercice 3

Reprendre la question de M. HENRY sur la preuve par récurrence du fait que tout lot de stylos ne contient que des stylos de même couleur.

Exercice 4

Montrer par récurrence les deux propriétés suivantes et indiquer quelle(s) différence(s) notable(s) on peut observer entre ces deux preuves.

1. Pour tout $n \in \mathbf{N}^*$, on a:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

2. Soit $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=F_1=1$ et pour tout $n\in\mathbb{N},$ $F_{n+2}=F_n+F_{n+1}.$ Alors, pour tout $n\in\mathbb{N},$ on a

$$F_n = \frac{5 - \sqrt{5}}{10} \left(\frac{1 - \sqrt{5}}{2} \right)^n + \frac{5 + \sqrt{5}}{10} \left(\frac{1 + \sqrt{5}}{2} \right)^n.$$

3. Tout entier supérieur ou égal à 2 admet une décomposition en un produit de de nombre premiers.

Exercice 5

Montrer que si deux droites d_1 et d_2 sont parallèles et d_1 est contenue dans le plan P alors d_2 est parallèle à P.

1 Entraînement à l'écrit

Rédiger la solution de la Partie B du Problème n° 2 de l'Épreuve 1 de 2012.